87 research outputs found

    Measurement back-action on adiabatic coherent electron transport

    Full text link
    We study the back-action of a nearby measurement device on electrons undergoing coherent transfer via adiabatic passage (CTAP) in a triple-well system. The measurement is provided by a quantum point contact capacitively coupled to the middle well, thus acting as a detector sensitive to the charge configuration of the triple-well system. We account for this continuous measurement by treating the whole {triple-well + detector} as a closed quantum system. This leads to a set of coupled differential equations for the density matrix of the enlarged system which we solve numerically. This approach allows to study a single realization of the measurement process while keeping track of the detector output, which is especially relevant for experiments. In particular, we find the emergence of a new peak in the distribution of electrons that passed through the point contact. As one increases the coupling between the middle potential well and the detector, this feature becomes more prominent and is accompanied by a substantial drop in the fidelity of the CTAP scheme

    Transport properties of partially equilibrated quantum wires

    Full text link
    We study the effect of thermal equilibration on the transport properties of a weakly interacting one-dimensional electron system. Although equilibration is severely suppressed due to phase-space restrictions and conservation laws, it can lead to intriguing signatures in partially equilibrated quantum wires. We consider an ideal homogeneous quantum wire. We find a finite temperature correction to the quantized conductance, which for a short wire scales with its length, but saturates to a length-independent value once the wire becomes exponentially long. We also discuss thermoelectric properties of long quantum wires. We show that the uniform quantum wire is a perfect thermoelectric refrigerator, approaching Carnot efficiency with increasing wire length.Comment: 20 pages, 6 figure

    Resistivity of inhomogeneous quantum wires

    Full text link
    We study the effect of electron-electron interactions on the transport in an inhomogeneous quantum wire. We show that contrary to the well-known Luttinger liquid result, non-uniform interactions contribute substantially to the resistance of the wire. In the regime of weakly interacting electrons and moderately low temperatures we find a linear in T resistivity induced by the interactions. We then use the bosonization technique to generalize this result to the case of arbitrarily strong interactions.Comment: 4 pages, 1 figur

    Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

    Full text link
    We consider an electronic analog of the Hong-Ou-Mandel (HOM) interferometer, where two single electrons travel along opposite chiral edge states and collide at a Quantum Point Contact. Studying the current noise, we show that because of interactions between co-propagating edge states, the degree of indistinguishability between the two electron wavepackets is dramatically reduced, leading to reduced contrast for the HOM signal. This decoherence phenomenon strongly depends on the energy resolution of the packets. Insofar as interactions cause charge fractionalization, we show that charge and neutral modes interfere with each other, leading to satellite dips or peaks in the current noise. Our calculations explain recent experimental results [E. Bocquillon, et al., Science 339, 1054(2013)] where an electronic HOM signal with reduced contrast was observed.Comment: 5 pages, 2 figure

    Poissonian tunneling through an extended impurity in the quantum Hall effect

    Full text link
    We consider transport in the Poissonian regime between edge states in the quantum Hall effect. The backscattering potential is assumed to be arbitrary, as it allows for multiple tunneling paths. We show that the Schottky relation between the backscattering current and noise can be established in full generality: the Fano factor corresponds to the electron charge (the quasiparticle charge) in the integer (fractional) quantum Hall effect, as in the case of purely local tunneling. We derive an analytical expression for the backscattering current, which can be written as that of a local tunneling current, albeit with a renormalized tunneling amplitude which depends on the voltage bias. We apply our results to a separable tunneling amplitude which can represent an extended point contact in the integer or in the fractional quantum Hall effect. We show that the differential conductance of an extended quantum point contact is suppressed by the interference between tunneling paths, and it has an anomalous dependence with respect to the bias voltage

    Crystallization of Levitons in the fractional quantum Hall regime

    Full text link
    Using a periodic train of Lorentzian voltage pulses, which generates soliton-like electronic excitations called Levitons, we investigate the charge density backscattered off a quantum point contact in the fractional quantum Hall regime. We find a regular pattern of peaks and valleys, reminiscent of analogous self-organization recently observed for optical solitons in non-linear environments. This crystallization phenomenon is confirmed by additional side dips in the Hong-Ou-Mandel noise, a feature that can be observed in nowadays electron quantum optics experiments.Comment: 9 pages, 4 figure

    Minimal excitation states for heat transport in driven quantum Hall systems

    Full text link
    We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasi-particles between opposite edge states, thus acting as a beam splitter in the framework of the electron quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in experiments, represent the cleanest states for heat transport, since excess heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations to the overlap of Lorentzian wavepackets. Even though mixed and heat noise have nonlinear dependence on the voltage bias, and despite the non-integer power-law behavior arising from the fractional quantum Hall physics, an arbitrary superposition of levitons always generates minimal excitation states.Comment: 15 pages, 7 figure

    Conductance of fully equilibrated quantum wires

    Full text link
    We study the conductance of a quantum wire in the presence of weak electron-electron scattering. In a sufficiently long wire the scattering leads to full equilibration of the electron distribution function in the frame moving with the electric current. At non-zero temperature this equilibrium distribution differs from the one supplied by the leads. As a result the contact resistance increases, and the quantized conductance of the wire acquires a quadratic in temperature correction. The magnitude of the correction is found by analysis of the conservation laws of the system and does not depend on the details of the interaction mechanism responsible for equilibration.Comment: 4 pages, 2 figure

    Two experimental set-ups designed for investigation of friction stir spot welding process

    Get PDF
    International audienceThe effects of positioning and clamping conditions of a specimen of friction stir spot welding are investigated in this paper in terms of axial force and torque generated during the process. For this purpose, two special designs of experimental set-ups embedding different positioning and clamping conditions are presented. A four-component mechanical sensor is used for the measurements. First, the effects of the rotational speed of the spindle and the plunge depth of the tool on the axial force and torque are studied. Second, the effects of positioning and clamping conditions are investigated through both set-ups designed, varying the spindle rotation speed. It is shown that the axial force and torque exhibit an important dependence with respect to the rotation speed of the tool and that their maxima depend on positioning and clamping conditions of the specimen

    Quantum critical behavior in itinerant electron systems -- Eliashberg theory and instability of a ferromagnetic quantum-critical point

    Full text link
    We consider the problem of fermions interacting with gapless long-wavelength collective bosonic modes. The theory describes, among other cases, a ferromagnetic quantum-critical point (QCP) and a QCP towards nematic ordering. We construct a controllable expansion at the QCP in two steps: we first create a new, non Fermi-liquid ``zero-order'' Eliashberg-type theory, and then demonstrate that the residual interaction effects are small. We prove that this approach is justified under two conditions: the interaction should be smaller than the fermionic bandwidth, and either the band mass mBm_B should be much smaller than m=pF/vFm = p_F/v_F, or the number of fermionic flavors NN should be large. For an SU(2) symmetric ferromagnetic QCP, we find that the Eliashberg theory itself includes a set of singular renormalizations which can be understood as a consequence of an effective long-range dynamic interaction between quasi-particles, generated by the Landau damping term. These singular renormalizations give rise to a negative non-analytic q3/2q^{3/2} correction to the static spin susceptibility, and destroy a ferromagnetic QCP. We demonstrate that this effect can be understood in the framework of the ϕ4\phi^4 theory of quantum criticality. We also show that the non-analytic q3/2q^{3/2} correction to the bosonic propagator is specific to the SU(2) symmetric case. For systems with a scalar order parameter, the q3/2q^{3/2} contributions from individual diagrams cancel out in the full expression of the susceptibility, and the QCP remains stable.Comment: 37 pages, 10 fig
    corecore